Skip to main content

Genome-based characterization of a plasmid-associated micrococcin P1 biosynthetic gene cluster and virulence factors in Mammaliicoccus sciuri IMDO-S72

  • January 11, 2022

Analysis of the de novo assembled genome of Mammaliicoccus sciuri IMDO-S72 revealed the genetically encoded machinery behind its earlier reported antibacterial phenotype and gave further insight into the repertoire of putative virulence factors of this recently reclassified species. A plasmid-encoded biosynthetic gene cluster was held responsible for the antimicrobial activity of M. sciuri IMDO-S72, comprising genes involved in thiopeptide production. The compound encoded by this gene cluster was structurally identified as micrococcin P1. Further examination of its genome highlighted the ubiquitous presence of innate virulence factors mainly involved in surface colonization. Determinants contributing to aggressive virulence were generally absent, with exception of a plasmid-associated ica cluster. The native antibiotic resistance genes sal(A) and mecA were detected within the genome, amongst others, but were not consistently linked with a resistant phenotype. While mobile genetic elements were identified within the genome, such as an untypeable SCC element, they proved to be generally free of virulence- and antibiotic-related genes. These results further suggest a commensal lifestyle of M. sciuri and indicate the association of antibiotic resistance determinants with mobile genetic elements, as an important factor in conferring antibiotic resistance, in addition to their unilateral annotation.

 

Click here for publisher's page